MECATRONICA
Bienvenido a mi web de Mecatronica
Open menu
  • Inicio
  • Noticias
  • Drones
    • Enaire
    • Normativa Drones
    • Jornada Informativa Nuevo RD Drones - Operaciones EASA
  • Electronica
  • Robotica
  • Impresoras 3D
  • Marlin
  • Mecanica
  • Prensa y Videos
    • Prensa
    • Canal Sur TV

Los ingenieros crean material «similar a la vida», con metabolismo artificial

Como material genético, el ADN es responsable de toda la vida conocida. Pero el ADN también es un polímero. Aprovechando la naturaleza única de la molécula, los ingenieros de Cornell han creado máquinas simples construidas con biomateriales con propiedades de seres vivos.

Con el uso de lo que denominan materiales DASH (DNA-based Assembly and Synthesis of Hierarchical materials, Ensamblaje y Síntesis de Jerarquías a base de ADN), los ingenieros de Cornell construyeron un material de ADN con capacidades de metabolismo, además del autoensamblaje y la organización, tres características clave de la vida.

“Estamos introduciendo un concepto de material completamente nuevo y realista impulsado por su propio metabolismo artificial”. «No estamos haciendo algo que está vivo, pero estamos creando materiales que son mucho más reales que nunca se han visto antes», dijo Dan Luo, profesor de ingeniería biológica y ambiental en la Facultad de Agricultura y Ciencias de la Vida.

El artículo es «Material de ADN dinámico con comportamiento de locomoción emergente impulsado por el metabolismo artificial» (Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism), publicado el 10 de abril en Science Robotics.

Para que cualquier organismo vivo se mantenga, debe haber un sistema para gestionar el cambio. Se deben generar nuevas células; Las células viejas y los desechos deben ser barridos. La biosíntesis y la biodegradación son elementos clave de la autosostenibilidad y requieren metabolismo para mantener su forma y funciones.

A través de este sistema, las moléculas de ADN se sintetizan y ensamblan en patrones de manera jerárquica, lo que resulta en algo que puede perpetuar un proceso dinámico y autónomo de crecimiento y decadencia.

Usando DASH, los ingenieros de Cornell crearon un biomaterial que puede emerger de forma autónoma de sus bloques de construcción a nanoescala y organizarse por sí mismo, primero en polímeros y finalmente en formas de mesoescala (componentes en un rango de aproximadamente 0,1 mm a 5 mm). Partiendo de una secuencia de semillas de 55 nucleótidos, las moléculas de ADN se multiplicaron cientos de miles de veces, creando cadenas de ADN de repetición de unos pocos milímetros de tamaño. La solución de reacción se inyectó luego en un dispositivo microfluídico que proporcionaba un flujo de energía líquida y los componentes básicos necesarios para la biosíntesis.

A medida que el flujo invadía el material, el ADN sintetizaba sus propias nuevas hebras, con el extremo frontal del material creciendo y el extremo de la cola degradándose en un equilibrio optimizado. De esta manera, hizo su propia locomoción, avanzando lentamente, contra el flujo, de manera similar a como se mueve el moho mucilaginoso.

La habilidad de locomoción permitió a los investigadores enfrentar grupos del material entre sí en carreras competitivas. Debido a la aleatoriedad en el entorno, un cuerpo eventualmente obtendría una ventaja sobre el otro, permitiendo que uno cruzara primero una línea de meta.

“Los diseños siguen siendo primitivos, pero mostraron una nueva ruta para crear máquinas dinámicas a partir de biomoléculas. Estamos en un primer paso en la construcción de robots reales mediante el metabolismo artificial”, dijo Shogo Hamada, profesor e investigador asociado en el laboratorio de Luo, y autor principal y coautor del artículo. “Incluso a partir de un diseño simple, pudimos crear comportamientos sofisticados como las competencias. El metabolismo artificial podría abrir una nueva frontera en robótica».

Actualmente, los ingenieros están explorando formas para que el material reconozca los estímulos y puedan buscarlos de manera autónoma en el caso de la luz o los alimentos, o evitarlos si son dañinos.

El metabolismo programado incrustado en los materiales de ADN es la innovación clave. El ADN contiene el conjunto de instrucciones para el metabolismo y la regeneración autónoma. Después de eso, es por su cuenta.

“Todo, desde su capacidad para moverse y competir, todos esos procesos son independientes. No hay interferencia externa «, dijo Luo. “La vida comenzó miles de millones de años a partir de unos pocos tipos de moléculas. Esto podría ser lo mismo».

El material que el equipo creó puede durar dos ciclos de síntesis y degradación antes de que caduque. Según los investigadores, es probable que la longevidad se extienda, lo que abre la posibilidad de más «generaciones» de material a medida que se auto-replica. «En última instancia, el sistema puede llevar a máquinas auto-reproductivas realistas», dijo Hamada.

«Más emocionante, el uso del ADN le da a todo el sistema una posibilidad de auto-evolución», dijo Luo. «Eso es enorme».

Teóricamente, podría diseñarse para que las generaciones subsiguientes surjan en segundos. Según Luo, la reproducción a este ritmo acelerado aprovecharía las propiedades de mutación naturales del ADN y aceleraría el proceso evolutivo.

En el futuro, el sistema podría usarse como un biosensor para detectar la presencia de cualquier ADN y ARN. El concepto también podría usarse para crear una plantilla dinámica para hacer proteínas sin células vivas.

El trabajo fue financiado en parte por la National Science Foundation y apoyado por el Fondo de Ciencia y Tecnología de NanoEscala de Cornell y el Instituto Kavli en Cornell for Nanoscale Science. Entre los colaboradores se encuentran Jenny Sabin, la profesora de Arquitectura Arthur L. e Isabel B. Wiesenberger, y los investigadores forman la Universidad Jiaotong de Shanghai y la Academia China de Ciencias.

Hay una patente pendiente en el Centro de Licencias de Tecnología.

Logran que catéter robótico ingrese por sí solo al corazón palpitante de cerdo vivo

El sistema de senseo del dispositivo fue inspirado por la forma en que las cucarachas se mueven a lo largo de los túneles.




Operar dentro de un corazón que late es un procedimiento complejo y delicado que requiere cirujanos expertos. El personal médico generalmente utiliza joysticks de control y una combinación de rayos X o ultrasonido para guiar con cuidado los catéteres a través del cuerpo.

Ahora, por primera vez, un catéter robótico ha sido capaz de navegar de forma autónoma dentro de un corazón para ayudar a llevar a cabo un procedimiento particularmente complejo. El dispositivo, que se inspiró en la forma en que ciertos animales aprenden sobre su entorno, se utilizó para ayudar a los cirujanos a cerrar las hemorragias en los corazones de cinco cerdos vivos.


«Las ratas usan bigotes para palpar a lo largo de la pared, los humanos sienten su camino y las cucarachas usan sus antenas», dice Pierre Dupont en la Escuela de Medicina de Harvard, quien dirigió el nuevo estudio publicado en Science Robotics. «Del mismo modo, este dispositivo usa sensores táctiles para elabora dónde está, y dónde ir a continuación, basado en un mapa del corazón «.

El dispositivo tiene 8 mm de ancho, con una cámara y una luz LED en su extremo que funciona como un sensor óptico y táctil combinado. Se usó un algoritmo de aprendizaje automático que se entrenó en alrededor de 2000 imágenes de tejido cardíaco para guiarlo a medida que se movía. El sensor táctil palpa periódicamente el tejido del corazón mientras se mueve, lo que ayuda a saber dónde está y asegurándose de no dañar el tejido.




 

Durante el experimento, el catéter navegó a la ubicación correcta el 95% del tiempo de los 83 ensayos en cinco cerdos. Esta es una tasa de éxito similar a la de un clínico con experiencia, y el procedimiento no dejó hematomas ni daños en los tejidos, según el equipo de investigación. Una vez en posición, los cirujanos tomaron el control y llevaron a cabo el procedimiento para reparar la hemorragia. Aunque han estado disponibles catéteres robóticos durante algunos años, este es el primero que ha podido encontrar su camino sin ayuda humana.

La idea es que, un día, esa tecnología podría liberar a los cirujanos para concentrarse en otras tareas o ayudar al personal médico menos experimentado a realizar procedimientos más complejos. La tecnología podría ser reutilizada para su uso en humanos dentro de cinco años, dice Dupont.

Artículo original:
Technology Review
Science Robotics

Un chip de I.A. supera a los robots y drones más impresionantes

En una reciente y deslumbrante mañana en California (EE.UU.), la investigadora del MIT Vivienne Sze subió a un pequeño escenario para realizar la que quizá haya sido presentación más desconcertante de su carrera. Dominaba el tema a la perfección. Debía hablar sobre los chips que se desarrollan en su laboratorio y de cómo iban a acercar el poder de la inteligencia artificial (IA) a una multitud de dispositivos con una potencia limitada sin tener que depender de los enormes centros de datos donde se realizan la mayoría de los cálculos de IA. Pero, tanto lo que vio en la conferencia como el público que acudió la hicieron reflexionar.

 

Hablamos de MARS, una conferencia de élite, solo para invitados, en la que los robots pasean (o vuelan) por un resort de lujo, mezclándose con famosos científicos y autores de ciencia ficción. Solo unos pocos investigadores fueron invitados a dar charlas técnicas, y las sesiones tienden a ser tanto inspiradoras como esclarecedoras. El público estaba compuesto por unos 100 investigadores, directores ejecutivos y algunos de los empresarios más importantes del mundo. El maestro de ceremonias de MARS fue el fundador y presidente de Amazon, Jeff Bezos, que estaba sentado en la primera fila. «Se podría decir que era un público de muy alto nivel», recuerda Sze con una sonrisa.

Otros ponentes de MARS presentaron robots que cortan al estilo kárate, drones que aletean como si fueran grandes insectos extrañamente silenciosos, e incluso proyectos para crear colonias marcianas. Ante esta competencia, los chips de Sze podían parecer más modestos. A simple vista, no se distinguen de los chips que hay dentro de cualquier dispositivo electrónico. Sin embargo, sus microprocesadores eran indudablemente mucho más importantes que cualquier otra cosa que hubo en la conferencia.

Nuevas capacidades

Los nuevos diseños de chips, como los que se desarrollan en el laboratorio de Sze, pueden ser cruciales para el futuro progreso de la IA, y los drones y robots que se dejaron ver en MARS. Hasta ahora, el software de IA se ejecutaba principalmente en unidades de procesamiento gráfico (GPU, por sus siglas en inglés), pero los nuevos diseños especializados de hardware podrían lograr que los algoritmos de IA sean más potentes, lo que abriría el camino a unas nuevas aplicaciones. Los nuevos chips de inteligencia artificial podrían masificar los robots de almacén y permitir que los teléfonos inteligentes crean escenarios fotorrealistas de realidad aumentada.

Los diseños de los chips de Sze son muy eficientes y flexibles, algo crucial para un campo que evoluciona tan rápido como la IA (ver ¿Quién ganará la batalla de los chips si el sector de la IA no para de cambiar?). En concreto, están diseñados para exprimir aún más potencial de los algoritmos de aprendizaje profundo que ya han revolucionado el mundo. Este proceso incluso podría lograr que este tipo de programas evolucionen por sí solos. Sze detalla: «Dado que la ley de Moore se ha ralentizado, necesitamos un nuevo hardware».

Esta ley choca cada vez más con los límites físicos de los componentes de ingeniería a escala atómica. Y está despertando un creciente interés en arquitecturas alternativas y nuevos enfoques de computación.

Este interés ha llegado incluso al Gobierno de EE. UU., que además de mantener su liderazgo en el diseño de chips en general, confía en los microprocesadores especializados para arrebatarle a China el trono de la IA. De hecho, los propios chips de Sze se están creando gracias a fondos de un programa de DARPA destinado a ayudar a desarrollar nuevos diseños de chips de IA (ver Así es la estrategia de EE.UU. para quitarle a China el trono de la IA).

Pero el impulso en la innovación de la fabricación de chips procede principalmente del aprendizaje profundo, una técnica muy poderosa de enseñar a las máquinas a realizar tareas útiles. En vez de dar a un ordenador un conjunto de reglas a seguir, una máquina se programa a sí misma básicamente. Los datos de entrenamiento se introducen en una gran red neuronal artificial simulada, que luego se ajusta para que produzca el resultado deseado. Con suficiente entrenamiento, un sistema de aprendizaje profundo puede encontrar patrones sutiles y abstractos en los datos. La técnica se aplica a una creciente variedad de tareas prácticas, desde el reconocimiento facial en los teléfonos inteligentes hasta la predicción de enfermedades a partir de imágenes médicas.

La carrera de los chips de IA

El aprendizaje profundo no depende tanto de la ley de Moore. Las redes neuronales ejecutan muchos cálculos matemáticos en paralelo, un enfoque para el que los GPU de videojuegos resultan mucho más efectivos dado que realizan computación paralela para renderizar imágenes en 3D. Pero los microchips diseñados específicamente para el aprendizaje profundo deberían ser aún más potentes.

El potencial de las nuevas arquitecturas de chips para mejorar la inteligencia artificial ha impulsado la actividad empresarial a un nivel que la industria de los chips no ha visto en décadas (ver La nueva carrera de los chips de silicio se libra en el cuadrilátero de la inteligencia artificial y China da la vuelta al marcador de los chips gracias a la IA). Las grandes empresas tecnológicas que quieren aprovechar y comercializar la inteligencia artificial, como Google, Microsoft y (sí) Amazon, están trabajando en sus propios chips de aprendizaje profundo. Pero también hay muchas start-ups trabajando en este campo. De hecho, el analista de microchips en la empresa de analistas Linley Group Mike Delmer considera que «es imposible hacer un seguimiento de todas las compañías que están apareciendo en el espacio del chip de IA». Y añade: «No bromeo cuando digo que descubrimos un nuevo chip casi cada semana«.

La verdadera oportunidad, según Sze, no reside en construir los chips de aprendizaje profundo más poderosos. La eficiencia energética también es importante porque la IA también debe funcionar más allá de los grandes centros de datos, lo que significa que los microprocesadores deberían ser capaces de funcionar con la energía disponible en el dispositivo. Esto se conoce como operar «al límite».

«La IA estará en todas partes, así que es importante encontrar formas de aumentar la eficiencia energética«, afirma el vicepresidente del grupo de productos de inteligencia artificial de Intel, Naveen Rao. Por ejemplo, el hardware de Sze es más eficiente, en parte, porque reduce físicamente el atasco entre el lugar en el que almacenan los datos y aquel en el que se analizan, pero también porque utiliza esquemas inteligentes para reutilizar los datos. Antes de unirse al MIT, Sze fue pionera en este enfoque para mejorar la eficiencia de la compresión de vídeo en Texas Instruments.

En un campo que avanza tan rápido, como es el aprendizaje profundo, el desafío para aquellos que trabajan con chips de IA consiste en asegurarse de que sean lo suficientemente flexibles para adaptarse a cualquier aplicación. Es fácil diseñar un chip súper eficiente capaz de hacer solo una tarea, pero ese tipo de producto se volverá obsoleto rápidamente.

El chip de Sze se llama Eyeriss. Desarrollado en colaboración con el científico investigador de Nvidia y profesor del MIT, Joel Emer, fue probado junto con varios procesadores estándar para ver cómo manejaba diferentes algoritmos de aprendizaje profundo. Equilibrando la eficiencia con la flexibilidad, el rendimiento del nuevo chip alcanza resulta entre 10 e incluso 1.000 veces más eficiente que el hardware existente, según un artículo publicado el año pasado.

Foto: Los investigadores del MIT Sertac Karaman y Vivienne Sze desarrollaron el nuevo chip.

 

Los chips de IA más simples ya están generando un gran impacto. Los teléfonos inteligentes de gama alta ya incluyen chips optimizados para ejecutar algoritmos de aprendizaje profundo para el reconocimiento de imagen y voz. Los chips más eficientes podrían permitir que estos dispositivos ejecuten un código de IA más potente con mejores capacidades. Los coches autónomos también necesitan poderosos chips de IA, ya que la mayoría de los prototipos dependen actualmente de un montón de ordenadores dentro del maletero.

Rao sostiene que los chips del MIT parecen prometedores, pero son muchos los factores que determinarán si una nueva arquitectura de hardware tendrá éxito. Uno de los más importantes, según él, es el desarrollo de software que permita a los programadores ejecutar código en él. «Hacer algo útil para aquellos que lo elaboran es probablemente el mayor obstáculo para la adopción», explica.

De hecho, el laboratorio de Sze también explora formas de diseñar software para explotar mejor las propiedades de los chips informáticos existentes. Y este trabajo se extiende más allá del aprendizaje profundo. Junto con el investigador del Departamento de Aeronáutica y Astronáutica del MIT Sertac Karaman, Sze desarrolló un chip de bajo consumo llamado Navion que realiza mapas en 3D y navegación de manera increíblemente eficiente, lo que permite integrarlo en un pequeño dron. Para este esfuerzo fue crucial diseñar un chip capaz de explotar el comportamiento de los algoritmos de navegación y crear un algoritmo que puediera aprovechar al máximo este chip personalizado. Junto al desarrollo del aprendizaje profundo, Navion refleja la forma en la que el software y el hardware de IA empiezan a evolucionar en simbiosis.

Los chips de Sze quizás no son tan llamativos como un dron con alas, pero el hecho de que fueran presentados en MARS refleja lo importante que será su tecnología, y la innovación del silicio en general, para el futuro de la IA. Después de su presentación, Sze afirma que algunos de los otros ponentes expresaron su interés en conocer más. «La gente encontró muchos casos importantes de aplicación», concluye. En otras palabras, podemos esperar que en la próxima conferencia de MARS los robots y drones lleven dentro algo bastante más especial.

Artículos relacionados:

■ Un robot que procura moverse tan bien como una hormiga
■ Chips de potencia ultra baja ayudan a hacer robots pequeños más capaces
■ Chip de cómputo basado en luz funciona similar a las neuronas

 

 

 

Imprimen en 3D partes mecánicas útiles con polvo similar al de la Luna

Un futuro en la luna
Para respaldar una base lunar futura y potencial, los investigadores de la Agencia Espacial Europea (ESA) imprimen en 3D y hornean polvo similar al de la Luna para formar tornillos,engranajes e incluso una moneda

 

.

 

Tanto las agencias espaciales privadas como las gubernamentales han expresado serias intenciones y comenzaron a desarrollar planes para construir una base habitada por humanos en la Luna. Pero se necesita mucho combustible, capacidad de carga y dinero para lanzar cosas al espacio y bajarlas en la luna. Y construir una base lunar desde cero requerirá una gran cantidad de materiales. Por lo tanto, sería extremadamente caro llevar todas estas partes de la Tierra a la Luna, especialmente porque el mantenimiento requerirá piezas de respaldo para las reparaciones.

Es por esto que los investigadores están investigando una opción más sostenible. En lugar de llevar cosas, podríamos hacerlas usando polvo de Luna o regolito, como alimentación para una impresora 3D. De esta manera podrían crear materiales de construcción de forma económica y sencilla en la propia Luna.

Para practicar, el equipo de la ESA imprimió en 3D artículos como tornillos y engranajes con polvo lunar falso. Aunque sus propiedades difieren de las del suelo terrestre, el regolito lunar no es demasiado difícil de simular, y se le puede dar forma de objetos utilizables a los óxidos de silicio, aluminio, calcio y hierro presentes.

Cómo imprimir en 3D con polvo lunar

Para imprimir en 3D con polvo de luna falso, el equipo comenzó con un regolito hecho por el hombre. El polvo se trituró hasta el tamaño de partícula y los granos resultantes se mezclaron con un agente aglutinante que reacciona a la luz. Luego, una impresora 3D colocó la mezcla en capas hasta que tomó forma el objeto deseado. Luego se expuso el artículo a la luz para que se endureciera, y se coció en un horno para solidificarlo por completo.

El producto terminado es como una pieza de cerámica de polvo de Luna, dice la ESA en un comunicado. Estas piezas iniciales han demostrado que es probable que se impriman con el regolito real de la Luna en una base lunar, y son parte del proyecto URBAN, más grande, que examina cómo la impresión 3D podría ayudar a la colonización lunar.

VER VIDEO

 

«Si uno necesita imprimir herramientas o piezas de maquinaria para reemplazar las piezas rotas en una base lunar, la precisión en las dimensiones y la forma de los elementos impresos será vital», dijo el ingeniero de materiales de la ESA Advenit Makaya en el comunicado.

Esta será una ventaja crítica para futuras misiones con destino a la Luna. Especialmente, para estadías prolongadas proyectadas en el satélite terrestre, aquellas cosas están destinadas a romperse o fallar. Si un solo tornillo se pierde o se rompe, es posible que la cuadrilla no tenga tornillos adicionales con la forma y el tamaño exactos necesarios. Al crear la pieza exacta requerida usando el regolito que los rodea, la tripulación podría mantener de manera sostenible las reparaciones en una base lunar.

 

Una prótesis que restaura la sensación de dónde está tu mano

Los investigadores han desarrollado una mano biónica de nueva generación que permite a los amputados recuperar su propiocepción. Los resultados del estudio son la culminación de diez años de investigación en robótica.

 

El nuevo dispositivo permite a los pacientes alcanzar un objeto en una mesa y determinar la consistencia, la forma, la posición y el tamaño de un elemento sin tener que mirarlo.

La mano biónica de la próxima generación, desarrollada por investigadores de la EPFL, la Escuela de Estudios Avanzados Sant’Anna en Pisa y el Policlínico Universitario A. Gemelli en Roma, permite a los amputados recuperar un sentido del tacto muy sutil y casi natural. Los científicos lograron reproducir la sensación de propiocepción, que es la capacidad de nuestro cerebro para detectar al instante y con precisión la posición de nuestros miembros durante y después del movimiento, incluso en la oscuridad o con los ojos cerrados.

El nuevo dispositivo permite a los pacientes alcanzar un objeto en una mesa y determinar la consistencia, la forma, la posición y el tamaño de un elemento sin tener que mirarlo. La prótesis ha sido probada con éxito en varios pacientes y funciona estimulando los nervios en el muñón del amputado. Los nervios pueden proporcionar retroalimentación sensorial a los pacientes en tiempo real, casi como lo hacen en una mano natural.

Los hallazgos han sido publicados en la revista Science Robotics. Son el resultado de diez años de investigación científica coordinada por Silvestro Micera, profesor de bioingeniería en la EPFL y en la Escuela de Estudios Avanzados Sant’Anna, y Paolo Maria Rossini, director de neurociencia del Policlínico Universitario A. Gemelli en Roma.

Retroalimentación sensorial

Las prótesis mioeléctricas actuales permiten a los amputados recuperar el control motor voluntario de su extremidad artificial mediante la explotación de la función muscular residual en el antebrazo. Sin embargo, la falta de retroalimentación sensorial significa que los pacientes tienen que confiar mucho en las señales visuales. Esto puede evitar que sientan que su extremidad artificial es parte de su cuerpo y causa que su uso sea más antinatural.

Recientemente, varios grupos de investigación han logrado proporcionar retroalimentación táctil en personas con amputaciones, lo que ha llevado a una mejor función y realización de prótesis. Pero este último estudio ha llevado las cosas un paso más allá.

«Nuestro estudio muestra que la sustitución sensorial basada en la estimulación intraneural puede ofrecer tanto la retroalimentación de posición como la retroalimentación táctil de manera simultánea y en tiempo real», explica Micera. «El cerebro no tiene problemas para combinar esta información, y los pacientes pueden procesar ambos tipos en tiempo real con excelentes resultados».

La estimulación intraneural restablece el flujo de información externa mediante pulsos eléctricos enviados por electrodos insertados directamente en el muñón del paciente. Luego, los pacientes deben someterse a entrenamiento para aprender gradualmente a traducir esos pulsos en sensaciones propioceptivas y táctiles.

 

Esta técnica permitió a dos amputados recuperar una agudeza propioceptiva alta, con resultados comparables a los obtenidos en sujetos sanos. La entrega simultánea de información de posición y la retroalimentación táctil permitieron a los dos amputados determinar el tamaño y la forma de cuatro objetos con un alto nivel de precisión (75,5%).

«Estos resultados muestran que los amputados pueden procesar de manera efectiva la información táctil y de posición recibida simultáneamente a través de la estimulación intraneural», dice Edoardo D’Anna, investigador de EPFL y autor principal del estudio.

Fuente de la historia: Materiales proporcionados por Ecole Polytechnique Fédérale de Lausanne.

Referencia de publicación:

Edoardo D’Anna, Giacomo Valle, Alberto Mazzoni, Ivo Strauss, Francesco Iberite, Jérémy Patton, Francesco M. Petrini, Stanisa Raspopovic, Giuseppe Granata, Riccardo Di Iorio, Marco Controzzi, Christian Cipriani, Thomas Stieglitz, Paolo M. Rossini, Silvestro Micera. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback (Una prótesis de mano de circuito cerrado con tacto intraneural simultáneo y retroalimentación de posición). Science Robotics, 2019; 4 (27): eaau8892 DOI: 10.1126/scirobotics.aau8892

  1. Creando robots que pueden ir a donde nosotros vamos
  2. Pez robot se mueve alimentado con “sangre” falsa
  3. Ingenieros desarrollan un tentáculo robótico magnético que puede pasar por los estrechos conductos del pulmón
  4. Crean los microrobots más pequeños, ligeros y veloces jamás vistos

Página 3 de 4

  • 1
  • 2
  • 3
  • 4

Anuncios