La historia comienza a centenares de metros de altura con las aves migratorias, y termina con un pez robótico nadando en el agua debajo. Para prepararse para sus viajes, las aves engordan mucho, hasta casi duplicar su peso, lo que las convierte en baterías emplumadas. Queman esa reserva de energía para impulsar sus alas a lo largo de muchos días y muchos kilómetros, y para evitar morir de hambre y congelarse. Finalmente, llegan extenuadas a sus destinos.
Una buena idea, pensaron los ingenieros de Cornell y de la Universidad de Pennsylvania, para un nuevo sistema de alimentación de potencia para máquinas. Les hizo pensar: la grasa es una batería genial, pero no es muy factible replicarla en un robot. ¿Pero… y la sangre? En un ser humano, la sangre distribuye oxígeno y energía para las células en todo el cuerpo. Y algunos robots, ya se mueven en base a fluidos, en forma de hidráulica. Entonces, ¿por qué no modificar ese fluido para transportar energía, ya que nuestra sangre alimenta nuestros músculos?
A lo que han llegado no es un ave robot (demasiado complicada y con intensa necesidad de energía) sino a un pez león robot que utiliza un sistema vascular rudimentario y «sangre» para energizarse y alimentar hidráulicamente sus aletas. Esta tecnología aún está en sus primeros días, y de hecho este pez es extremadamente lento, pero quizás algunas máquinas del mañana podrían deshacerse de las baterías y los cables y alimentarse como organismos biológicos.
Inflexiblemente, los robots actuales están segmentados. Tienen una batería de iones de litio, que distribuye la energía por medio de cables a los motores de sus extremidades, a los que se conoce como actuadores. Este nuevo pez león robótico tiene baterías, pero están esparcidas por todo su cuerpo y funcionan en conjunto con dos bombas, una para alimentar las aletas pectorales y otra para la cola. Juntas, las baterías y las bombas actúan más como corazones biológicos que como una batería de ion litio en un robot tradicional.
El primer componente es la «sangre», en esencia un fluido hidráulico cargado con iones disueltos, lo que le da potencial químico para alimentar la electrónica. «El fluido hidráulico transmite fuerza, y solo fuerza», dice Robert Shepherd, el robotista de Cornell, coautor de un nuevo artículo en Nature que describe el sistema. «En nuestro fluido, estamos transmitiendo fuerza y estamos transmitiendo energía eléctrica».
Este líquido cargado fluye a través de las células de la batería en el abdomen y las aletas del pez. Cada celda tiene dos piezas de metal opuestas: un cátodo y un ánodo. A medida que el fluido fluye más allá de estos, crea un desequilibrio de carga o voltaje que hace que los electrones fluyan a través de la electrónica que alimenta las dos bombas. Estos a su vez mantienen el bombeo del fluido. Finalmente las celdas de la batería se agotarán, ya que el líquido pierde iones y dejará de circular. En ese momento es posible recargar el líquido para que los peces sigan funcionando. «En realidad, podrían drenar el fluido e inyectar más fluido cargado», dice Shepherd, «algo así como llenar su tanque de combustible en la estación de servicio».
El fluido, entonces, energiza a los peces. Pero también actúa como un fluido hidráulico tradicional, ya que transmite fuerza a la cola y las aletas pectorales. Cuando las bombas empujan el fluido hacia las aletas, se doblan hacia atrás y hacia delante para impulsar el robot. Las aletas pectorales funcionan de la misma manera para guiar a los peces hacia la izquierda y hacia la derecha.
Esto no mueve al robot de manera particularmente rápida: los peces pueden cubrir aproximadamente 1,5 veces la longitud de su cuerpo por minuto. «Definitivamente se lo comerían si estuviera en el océano», dice Shepherd.
Pero la velocidad del robot mejorará, ya que Shepherd y su equipo pueden aumentar el área de superficie de los ánodos y cátodos para mejorar la densidad de potencia. A diferencia de un robot tradicional de cuerpo duro, pueden llenar con celdas de batería donde lo deseen y dejar que la forma blanda del robot se adapte a los componentes adicionales. De este modo, se construye un sistema circulatorio robótico extendido: bombas y baterías que transportan el líquido por todo el robot.
Este sistema tiene algunas limitaciones importantes, especialmente teniendo en cuenta el estado avanzado de la tecnología de iones de litio. «La densidad de potencia es de 30 a 150 veces menos en lo que se observa en comparación con la capacidad de una batería de ión litio», dice el robotista del MIT CSAIL Robert Katzschmann, cuyo pez robot utiliza una batería de ión litio tradicional. Eso significa que el robot de Katzschmann puede moverse 20 veces más rápido que este nuevo pez.
Además, la naturaleza distribuida de este nuevo sistema de energía en los peces implica que no es posible cambiar con facilidad una batería sobre la marcha. «Cada vez que iba al océano, simplemente reemplazaba la batería por una nueva, así que no tengo que esperar para recargar mi prototipo», dice Katzschmann.
Aún así, podría haber un lugar para esta nueva visión de la robótica, junto con los sistemas tradicionales de iones de litio. Hay un montón de peces en el mar, después de todo.