Con un total de nueve núcleos, el Portenta X8 viene con Linux precargado aunque se puede programar con el IDE estándar. Es como un Arduino y una Raspberry Pi en un solo módulo compacto de grado industrial.
Arduino, como parte de las celebraciones de la Semana Arduino 2022, ha anunciado el sistema en módulo (SOM) Portenta X8 de alto rendimiento que ejecuta un sistema operativo basado en Linux precargado y que incluye un total de nueve núcleos de cómputo en microprocesadores y microcontroladores para obtener IA de borde (procesamiento local, o casi local, en lugar de ejecución en algún lugar de la nube), y cargas de trabajo en tiempo real.
El último lanzamiento en la creciente familia Portenta de dispositivos Arduino Pro, la placa Portenta X8 es, con mucho, la más poderosa y compacta. Combina el enfoque tradicional de Arduino de capacidades de microcontrolador en tiempo real con un potente procesador Arm de cuatro núcleos, compatible con Linux, más o menos equivalente en rendimiento a una Raspberry Pi.
El corazón de la placa es un NXP i.MX 8M Mini, un sistema en chip compatible con Linux con cuatro procesadores Arm Cortex-A53 que funcionan hasta 1,8 GHz, más un único núcleo Arm Cortex-M4 en tiempo real que funciona hasta 400MHz. Además de esto, Arduino ha agregado un microcontrolador STMicro STM32H747XI con dos núcleos Cortex-M7 que funcionan hasta 480MHz y un solo núcleo Cortex-M4 que funciona hasta 240MHz. Así que, en total, la placa compacta cuenta con nueve núcleos de cómputo, más 2 GB de memoria LPDDR4, 16 GB de almacenamiento eMMC y una conectividad gigabit Ethernet PHY más Wi-Fi y Bluetooth Low Energy (BLE).
Diseñado para su uso con la plataforma de operaciones de desarrollador basada en la nube (DevOps) de Foundries.io, el Portenta X8 viene precargado con un sistema operativo Linux microPlatform de código abierto que ofrece un sistema de virtualización, que separa las aplicaciones que se ejecutan en contenedores sobre una capa de virtualización del sistema operativo seguro subyacente.
Especificaciones de Arduino Portenta X8:
- SoC: NXP i.MX 8M Mini Cortex-A53 de cuatro núcleos hasta 1,8 GHz, 1 núcleo Cortex-M4 en tiempo real hasta 400 MHz.
- Microcontrolador: STMicro STM32H747AII6 Cortex-M7 @ 480 MHz + M4 @ 240 MHz MCU con 2 MB de memoria flash de doble banco, 1 MB de RAM, acelerador de hardware de gráficos Chrom-ART
- Memoria del sistema: 2 GB LPDDR4
- Almacenamiento: flash eMMC de 16 GB
- conectividad
- Interfaz Gigabit Ethernet
- 802.11 b/g/n Wi-Fi 4 y Bluetooth 4.1 (Infineon CYW4343W)
- Interfaz de Video: interfaces MIPI DSI y CSI a través de un conector de expansión de 80 pines, DisplayPort a través del puerto USB-C
- USB: 1 puerto USB 2.0 tipo C para alimentación (PD), programación y salida DisplayPort
- E/S: 2 conectores de alta densidad de 80 pines con CAN, PCIe, SAI, MIPI, DSI, SPI, I2S, I2C, UART, PDM
- Seguridad – elemento seguro NXP SE0502, PSA by Arm
- Fuente de alimentación: 5 V a través del puerto USB-C
- Dimensiones – 66,04 x 25,4 mm
- Rango de temperatura – -40°C a +85°C
Arduino espera una amplia adopción de la industria para esta nueva placa. La compañía ha incluido un elemento de seguridad de hardware NXP SE050C2 y ha obtenido la certificación PSA, la certificación Arm SystemReady, y ha integrado los servicios de Parsec, lo que lo convierte en uno de los primeros dispositivos disponibles que cumplen con los especificaciones de Arm’s Project Cassini.
Si bien Arduino ya hizo el lanzamiento de la placa, no está del todo lista para la distribución: la compañía espera que las primeras unidades Portenta X8 estén disponibles a mediados de abril, a un precio de u$s 239.
________________________________________
Fuentes: https://www.hackster.io/, https://www.arduino.cc/ y robots-argentina.com.ar
Investigadores rusos y sus colaboradores internacionales desarrollan una fotocélula bioelectrónica completamente funcional utilizando una molécula de una proteína fluorescente unida a un nanotubo de carbono.
Cuando se expone a la luz, el sistema puede cambiar sus propiedades electrónicas y funcionar emitiendo luz o como una célula de memoria, dependiendo de cómo se adjunte la proteína al tubo. Los hallazgos del equipo abren la puerta a nuevos elementos electrónicos, dispositivos de memoria y células solares ecológicos.
En láseres, diodos emisores de luz (LED) y algunos dispositivos de memoria se utilizan dispositivos optoelectrónicos capaces de almacenar y transmitir información respondiendo a varias longitudes de onda de luz. Son de particular interés los sistemas híbridos que contienen biomoléculas, como proteínas, junto con elementos electrónicos. Gracias a su bajo costo, seguridad ambiental y buen desempeño óptico, los sistemas híbridos pueden usarse como componentes en electrónica molecular, LED, láseres avanzados y transistores ópticos
Microchip con un transistor bio-optoelectrónico
Investigadores del Instituto de Tecnología Electrónica de Moscú (MIET), el Instituto de Física Lebedev de RAS y el Instituto de Ciencia y Tecnología Skolkovo (Skoltech) en Moscú y sus colegas del Reino Unido, Finlandia y Serbia, modificaron nanotubos de carbono utilizando la proteína fluorescente verde (GFP).
«En la configuración examinada, un nanotubo de carbono de pared simple (SWCNT) funciona como un conductor activo y portador de una molécula de proteína, mientras que el grupo de fenilazida proporciona un entrecruzamiento covalente para los portadores de carga comunes entre los componentes del dispositivo», explica el profesor de Skoltech Albert Nasibulin, jefe del Laboratorio de Nanomateriales.
Al observar la estructura de los compuestos resultantes, el equipo descubrió que la proteína puede ayudar a controlar el tipo de elemento optoelectrónico que resultará. Dado que el sistema puede intercambiar energía y portadores de carga con el medio ambiente, los autores aprovecharon esta capacidad para construir nuevos nanodispositivos.
“El nanotubo de carbono es indispensable para las estructuras de sensores biomímicos, ya que ayuda a registrar hasta los más mínimos cambios en la estructura y la carga de las biomoléculas individuales a las que está vinculado”, comenta Nikita Nekrasov, estudiante de posgrado en MIET.
Los nanotubos de carbono tienen muchos electrones libres que pueden migrar a la proteína GFP y regresar a través del puente de fenilazida. Los investigadores probaron diferentes opciones de fijación de la GFP, colocando el cilindro en posición vertical o lateral, para ver cómo se comportaba la fotocélula. Descubrieron que si la proteína se colocaba de lado con su lado repelente al agua unido al tubo, todo el sistema se comportaba como un foco que controlaba la conductividad del tubo. Esto sucede porque encender y apagar la luz de excitación provoca un intenso intercambio de electrones entre el nanotubo y la proteína. En cambio, si se unía al tubo la parte de absorción de agua de la proteína, la carga quedaba atrapada entre el nanotubo y la proteína, lo que permitía que el dispositivo almacenara información durante docenas de minutos. A la vez, el elemento permaneció estable durante mucho tiempo gracias a la cubierta proteica protectora.
“Nuestros hallazgos ayudarán a crear dispositivos controlados por luz potentes y compactos para el almacenamiento y transmisión de información. Además, ambas partes de nuestros elementos son biodegradables y, por lo tanto, se pueden utilizar para crear células solares amigables con el medio ambiente”, señala Ivan Bobrinetsky, Doctor en Ciencias Técnicas, director de proyectos de subvenciones de RSF e investigador principal de MIET.
________________________________________
Artículo original: La investigación, que fue apoyada por una subvención de la Russian Science Foundation (RSF), se publicó en la revista Advanced Functional Materials, y robots-argentina.com.ar
Un equipo de científicos de la Universidad Nacional de Singapur (NUS) se inspiró en los invertebrados submarinos como las medusas para crear una piel electrónica con una funcionalidad similar.
Al igual que una medusa, la piel electrónica es transparente, estirable, sensible al tacto y se auto-repara en entornos acuáticos. Pero además es conductora de la electricidad, y podría usarse en todo, desde pantallas táctiles resistentes al agua hasta robots acuáticos blandos.
El profesor asistente Benjamin Tee y su equipo del Departamento de Ciencia e Ingeniería de Materiales de la Facultad de Ingeniería de la Universidad Nacional de Singapur desarrollaron el material, junto con colaboradores de la Universidad de Tsinghua y la Universidad de California en Riverside.
El equipo de ocho investigadores dedicó poco más de un año a desarrollar el material, y su invención se publicó por primera vez este año en la revista Nature Electronics.
Materiales auto-reparables, transparentes e impermeables para un amplio rango de usos
El profesor asistente Tee ha estado trabajando en pieles electrónicas durante muchos años, y fue parte del equipo que desarrolló los primeros sensores electrónicos de piel con auto-reparación en 2012.
Su experiencia en esta área de investigación lo llevó a identificar los obstáculos clave que aún no han superado las pieles electrónicas auto-reparables. «Uno de los desafíos con la mayoría de los materiales auto-reparables actuales es que no son transparentes y no funcionan de manera eficiente cuando están mojados», dijo. «Estos inconvenientes los hacen menos útiles para aplicaciones electrónicas, como las pantallas táctiles, que a menudo deben usarse en condiciones de clima con humedad extrema».
Continuó: «Con esta idea en mente, comenzamos a observar a las medusas; son transparentes y capaces de percibir en el ambiente acuático. Entonces, nos preguntamos cómo podríamos hacer un material artificial que pudiera imitar la naturaleza resistente al agua de las medusas y, sin embargo, fuese sensible al tacto».
Tuvieron éxito en este esfuerzo al crear un gel que consiste en un polímero a base de fluorocarbono con un líquido ionizado rico en flúor. Cuando se los combina, la red de polímeros interactúa con el líquido iónico a través de interacciones ión-dipolo altamente reversibles, lo que le permite auto-repararse.
Al elaborar las ventajas de esta configuración, el profesor Tee explicó: «La mayoría de los geles de polímeros conductores, como los hidrogeles, se hinchan al sumergirlos en agua o se secan con el tiempo en el aire, lo que hace que nuestro material sea diferente es que puede conservar su forma tanto en entornos húmedos como secos. Funciona bien en agua de mar e incluso en ambientes ácidos o alcalinos».
La próxima generación de robots blandos
La piel electrónica se crea imprimiendo el material nuevo dentro de circuitos electrónicos. Como es un material blando y estirable, sus propiedades eléctricas cambian cuando se toca, presiona o se tensa.
«Luego podemos medir este cambio y convertirlo en señales eléctricas legibles para crear una amplia gama de diferentes aplicaciones de sensores», agregó el profesor Tee.
«La capacidad de imprimir nuestro material en 3D también muestra potencial en la creación de tableros de circuitos totalmente transparentes que podrían usarse en aplicaciones robóticas. Esperamos que este material pueda usarse para desarrollar varias aplicaciones en tipos emergentes de robots blandos», agregó el profesor Tee, quien también pertenece al Departamento de Ingeniería Eléctrica e Informática de NUS, y el Instituto Biomédico para la Investigación y Tecnología de Salud Global (BIGHEART) en NUS.
Los robots blandos, y la electrónica blanda en general, buscan imitar los tejidos biológicos para hacerlos más compatibles mecánicamente con las interacciones hombre-máquina. Además de las aplicaciones de robots blandos convencionales, la tecnología impermeable de este nuevo material permite el diseño de robots anfibios y dispositivos electrónicos resistentes al agua.
Una ventaja adicional de esta piel electrónica autorreparable es el potencial que tiene para reducir la basura tecnológica. Tee explicó: «Cada año, se generan globalmente millones de toneladas de desechos electrónicos provenientes de teléfonos móviles, tabletas, etc. Esperamos crear un futuro en el que los dispositivos electrónicos hechos de materiales inteligentes puedan realizar acciones de reparación automática para reducir la cantidad de desechos electrónicos en el mundo».
Próximos pasos
El profesor Tee y su equipo continuarán su investigación y esperan explorar más posibilidades de este material en el futuro. Dijo: «Actualmente, estamos haciendo uso de las propiedades integrales del material para hacer nuevos dispositivos optoelectrónicos, que podrían utilizarse en muchas nuevas interfaces de comunicación hombre-máquina».
Fuente de la historia: ScienceDaily. Materiales proporcionados por la Universidad Nacional de Singapur. Referencia de la publicación: Yue Cao, Yu Jun Tan, Si Li, Wang Wei Lee, Hongchen Guo, Yongqing Cai, Chao Wang, Benjamin C.-K. Tee. Pieles electrónicas autocurables para ambientes acuáticos. Nature Electronics, 2019; 2 (2): 75 DOI: 10.1038 / s41928-019-0206-5
Como material genético, el ADN es responsable de toda la vida conocida. Pero el ADN también es un polímero. Aprovechando la naturaleza única de la molécula, los ingenieros de Cornell han creado máquinas simples construidas con biomateriales con propiedades de seres vivos.
Con el uso de lo que denominan materiales DASH (DNA-based Assembly and Synthesis of Hierarchical materials, Ensamblaje y Síntesis de Jerarquías a base de ADN), los ingenieros de Cornell construyeron un material de ADN con capacidades de metabolismo, además del autoensamblaje y la organización, tres características clave de la vida.
“Estamos introduciendo un concepto de material completamente nuevo y realista impulsado por su propio metabolismo artificial”. «No estamos haciendo algo que está vivo, pero estamos creando materiales que son mucho más reales que nunca se han visto antes», dijo Dan Luo, profesor de ingeniería biológica y ambiental en la Facultad de Agricultura y Ciencias de la Vida.
El artículo es «Material de ADN dinámico con comportamiento de locomoción emergente impulsado por el metabolismo artificial» (Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism), publicado el 10 de abril en Science Robotics.
Para que cualquier organismo vivo se mantenga, debe haber un sistema para gestionar el cambio. Se deben generar nuevas células; Las células viejas y los desechos deben ser barridos. La biosíntesis y la biodegradación son elementos clave de la autosostenibilidad y requieren metabolismo para mantener su forma y funciones.
A través de este sistema, las moléculas de ADN se sintetizan y ensamblan en patrones de manera jerárquica, lo que resulta en algo que puede perpetuar un proceso dinámico y autónomo de crecimiento y decadencia.
Usando DASH, los ingenieros de Cornell crearon un biomaterial que puede emerger de forma autónoma de sus bloques de construcción a nanoescala y organizarse por sí mismo, primero en polímeros y finalmente en formas de mesoescala (componentes en un rango de aproximadamente 0,1 mm a 5 mm). Partiendo de una secuencia de semillas de 55 nucleótidos, las moléculas de ADN se multiplicaron cientos de miles de veces, creando cadenas de ADN de repetición de unos pocos milímetros de tamaño. La solución de reacción se inyectó luego en un dispositivo microfluídico que proporcionaba un flujo de energía líquida y los componentes básicos necesarios para la biosíntesis.
A medida que el flujo invadía el material, el ADN sintetizaba sus propias nuevas hebras, con el extremo frontal del material creciendo y el extremo de la cola degradándose en un equilibrio optimizado. De esta manera, hizo su propia locomoción, avanzando lentamente, contra el flujo, de manera similar a como se mueve el moho mucilaginoso.
La habilidad de locomoción permitió a los investigadores enfrentar grupos del material entre sí en carreras competitivas. Debido a la aleatoriedad en el entorno, un cuerpo eventualmente obtendría una ventaja sobre el otro, permitiendo que uno cruzara primero una línea de meta.
“Los diseños siguen siendo primitivos, pero mostraron una nueva ruta para crear máquinas dinámicas a partir de biomoléculas. Estamos en un primer paso en la construcción de robots reales mediante el metabolismo artificial”, dijo Shogo Hamada, profesor e investigador asociado en el laboratorio de Luo, y autor principal y coautor del artículo. “Incluso a partir de un diseño simple, pudimos crear comportamientos sofisticados como las competencias. El metabolismo artificial podría abrir una nueva frontera en robótica».
Actualmente, los ingenieros están explorando formas para que el material reconozca los estímulos y puedan buscarlos de manera autónoma en el caso de la luz o los alimentos, o evitarlos si son dañinos.
El metabolismo programado incrustado en los materiales de ADN es la innovación clave. El ADN contiene el conjunto de instrucciones para el metabolismo y la regeneración autónoma. Después de eso, es por su cuenta.
“Todo, desde su capacidad para moverse y competir, todos esos procesos son independientes. No hay interferencia externa «, dijo Luo. “La vida comenzó miles de millones de años a partir de unos pocos tipos de moléculas. Esto podría ser lo mismo».
El material que el equipo creó puede durar dos ciclos de síntesis y degradación antes de que caduque. Según los investigadores, es probable que la longevidad se extienda, lo que abre la posibilidad de más «generaciones» de material a medida que se auto-replica. «En última instancia, el sistema puede llevar a máquinas auto-reproductivas realistas», dijo Hamada.
«Más emocionante, el uso del ADN le da a todo el sistema una posibilidad de auto-evolución», dijo Luo. «Eso es enorme».
Teóricamente, podría diseñarse para que las generaciones subsiguientes surjan en segundos. Según Luo, la reproducción a este ritmo acelerado aprovecharía las propiedades de mutación naturales del ADN y aceleraría el proceso evolutivo.
En el futuro, el sistema podría usarse como un biosensor para detectar la presencia de cualquier ADN y ARN. El concepto también podría usarse para crear una plantilla dinámica para hacer proteínas sin células vivas.
El trabajo fue financiado en parte por la National Science Foundation y apoyado por el Fondo de Ciencia y Tecnología de NanoEscala de Cornell y el Instituto Kavli en Cornell for Nanoscale Science. Entre los colaboradores se encuentran Jenny Sabin, la profesora de Arquitectura Arthur L. e Isabel B. Wiesenberger, y los investigadores forman la Universidad Jiaotong de Shanghai y la Academia China de Ciencias.
Hay una patente pendiente en el Centro de Licencias de Tecnología.
El sistema de senseo del dispositivo fue inspirado por la forma en que las cucarachas se mueven a lo largo de los túneles.
Operar dentro de un corazón que late es un procedimiento complejo y delicado que requiere cirujanos expertos. El personal médico generalmente utiliza joysticks de control y una combinación de rayos X o ultrasonido para guiar con cuidado los catéteres a través del cuerpo.
Ahora, por primera vez, un catéter robótico ha sido capaz de navegar de forma autónoma dentro de un corazón para ayudar a llevar a cabo un procedimiento particularmente complejo. El dispositivo, que se inspiró en la forma en que ciertos animales aprenden sobre su entorno, se utilizó para ayudar a los cirujanos a cerrar las hemorragias en los corazones de cinco cerdos vivos.
«Las ratas usan bigotes para palpar a lo largo de la pared, los humanos sienten su camino y las cucarachas usan sus antenas», dice Pierre Dupont en la Escuela de Medicina de Harvard, quien dirigió el nuevo estudio publicado en Science Robotics. «Del mismo modo, este dispositivo usa sensores táctiles para elabora dónde está, y dónde ir a continuación, basado en un mapa del corazón «.
El dispositivo tiene 8 mm de ancho, con una cámara y una luz LED en su extremo que funciona como un sensor óptico y táctil combinado. Se usó un algoritmo de aprendizaje automático que se entrenó en alrededor de 2000 imágenes de tejido cardíaco para guiarlo a medida que se movía. El sensor táctil palpa periódicamente el tejido del corazón mientras se mueve, lo que ayuda a saber dónde está y asegurándose de no dañar el tejido.
Durante el experimento, el catéter navegó a la ubicación correcta el 95% del tiempo de los 83 ensayos en cinco cerdos. Esta es una tasa de éxito similar a la de un clínico con experiencia, y el procedimiento no dejó hematomas ni daños en los tejidos, según el equipo de investigación. Una vez en posición, los cirujanos tomaron el control y llevaron a cabo el procedimiento para reparar la hemorragia. Aunque han estado disponibles catéteres robóticos durante algunos años, este es el primero que ha podido encontrar su camino sin ayuda humana.
La idea es que, un día, esa tecnología podría liberar a los cirujanos para concentrarse en otras tareas o ayudar al personal médico menos experimentado a realizar procedimientos más complejos. La tecnología podría ser reutilizada para su uso en humanos dentro de cinco años, dice Dupont.
Artículo original:
Technology Review
Science Robotics