mecatronica@inventronica.es

foto1

BIENVENIDOS

foto1

A

foto1

TODOS

foto1

A

foto1

WWW.MECATRONICA.ES

Menú Principal

Vinaora Visitors Counter

4586633
Hoy
Ayer
Esta Semana
Este Mes
Ultimo Mes
Todo
370
670
1040
2892
26209
4586633

Your IP: 35.172.233.215
2020-08-04 13:24
xenobots-robots-vivos-1.jpg
Un equipo de científicos ha logrado construir milimétricos “robots vivos”, ensamblados a partir de células de ranas y que podrían servir para suministrar medicamentos, limpiar residuos tóxicos o recoger microplásticos en los océanos. 
 
xenobots-robots-vivos-1.jpg

Llamados xenobots en honor a la rana africana con garras (Xenopus laevis) de la que tomaron sus células madre, las máquinas tienen menos de un milímetro (0,1 centímetros) de ancho, lo suficientemente pequeñas como para viajar dentro del cuerpo humano. Pueden caminar y nadar, sobrevivir durante semanas sin comida y trabajar juntas en grupos.

Estas son “formas de vida completamente nuevas”, dijo la Universidad de Vermont, que realizó la investigación con la Universidad de Tufts.

¿Qué son los ‘xenobots’?

Científicos de las universidades de Vermont y de Tufts han diseñado por primera vez estos minúsculos robots biológicos hechos a partir de células cardíacas y de la piel de una rana africana (Xenopus laevis). Estos ‘xenobots’, bautizados así por el animal del que proceden, miden aproximadamente medio milímetro.

Las células embrionarias se combinan con células contráctiles extraídas de progenitores cardiacos. Se ponen juntas en un cultivo tridimensional, y algunas de ellas empiezan a moverse solas, porque las células se mueven. Lo que los investigadores determinan es cuál es la composición por las que efectúan determinados movimientos.

¿Cómo se han diseñado?

Los investigadores estadounidenses comenzaron usando un algoritmo evolutivo -aquellos basados en los postulados de la evolución biológica- para crear miles de posibles diseños para estas nuevas formas de vida. Lo consiguieron gracias al superordenador Deep Green de la Universidad de Vermont. Después aplicaron reglas básicas de biofísica para establecer qué podían hacer las células de la piel o cardíacas y se quedaron con aquellos organismos simulados más exitosos.

Luego, transfirieron estos diseños a la vida: primero recolectaron células madre “cosechadas” de los embriones de ranas africanas, y luego las separaron en células individuales y las dejaron incubar.

Más tarde, con ayuda de unas diminutas pinzas y un electrodo aún más pequeño, las células fueron cortadas y unidas otra vez bajo el microscopio copiando los modelos conseguidos en el supercomputador. Ensambladas en “formas corporales nunca antes vistas” en la naturaleza, las células comenzaron a trabajar juntas, según un comunicado de prensa de la Universidad de Vermont.

xenobot2.jpg
Un xenobot con extremidades posteriores grandes y extremidades anteriores más pequeñas, en capas con músculo cardíaco rojo.

Luego, las células comenzaron a funcionar por sí mismas: las células de la piel se unieron para formar una estructura, mientras que las células del músculo cardíaco pulsante permitieron que el robot se moviera por sí solo. Los xenobots incluso tienen capacidades de autocuración; cuando los científicos dividieron un robot, se curó solo y siguió moviéndose.

“Estas son máquinas vivientes novedosas”, dijo Joshua Bongard, uno de sus responsables del proyecto y experto en robótica y computación de la Universidad de Vermont, en el comunicado de prensa. “No son un robot tradicional ni una especie conocida de animales. Es una nueva clase de artefactos: un organismo vivo y programable”.

¿Por qué la rana Xenopus laevis?

Se ha escogido a este animal básicamente por su versatilidad y su facilidad para trabajar con él en el laboratorio: “se trata de un modelo experimental de toda la vida; con el que hemos trabajado infinidad de científicos para muy distintas cosas, porque es muy manejable, come estupendamente, se adapta muy bien al laboratorio…”.

Son tejidos muy conocidos, el desarrollo embrionario Xenopus laevis es súperconocido, y el objetivo es después escalarlo, hacerlo con células de mamíferos o incluso con células humanas. La idea de los científicos no es quedarse aquí.

 

¿Se podrá aumentar su complejidad?

La escalabilidad será el mayor reto que los científicos tendrán por delante. Los ‘xenobots’ son solo un comienzo, y el desarrollo tampoco es claro.

 
Muchas veces en ciencia cuando quieres subir esa escala resulta que se hace tan complicado o tan caro que se abandona. Como dice alguno de los miembros del equipo investigador, las preguntas importantes son realmente cómo cooperan las células, cómo obtienen funciones, complejos celulares de varias unidades, cómo saben qué tienen que hacer y qué no.

tierra-robot-1140x600-768x404.jpg

¿Qué utilidad podrían tener?

Sus potenciales usos son muy variados, aunque todos están todavía muy lejos de convertirse en realidad. Los autores hablan de detectar tumores, limpiar desechos radiactivos, recolectar microplásticos en los océanos, transportar medicamentos dentro de cuerpos humanos o incluso viajar a nuestras arterias para raspar la placa. Los xenobots pueden sobrevivir en ambientes acuosos sin nutrientes adicionales durante días o semanas, lo que los hace adecuados para la administración interna de medicamentos.

Cómo funcionan los xenobots

Los investigadores comenzaron usando un algoritmo evolutivo -aquellos basados en los postulados de la evolución biológica- para crear miles de posibles diseños para estas nuevas formas de vida. Después aplicaron reglas básicas de Biofísica para establecer qué podían hacer las células de la piel o cardíacas y se quedaron con aquellos organismos simulados más exitosos y se desechó el resto.

Luego, los biólogos de Tufts, transfirieron estos diseños a la vida: primero recolectaron células madre “cosechadas” de los embriones de ranas africanas, en concreto de la especie “Xenopus laevis” -de ahí el nombre de los “xenobots”-; luego las separaron en células individuales y las dejaron incubar, continúa el comunicado. Más tarde, con ayuda de unas diminutas pinzas y un electrodo aún más pequeño, las células fueron cortadas y unidas otra vez bajo el microscopio copiando los modelos conseguidos en el supercomutador.

fotonoticia.jpg
A la izqda, huella anatómica del organismo diseñado por ordenador. A la derecha, el organismo vivo resultante.

Los robots se mueven por su cuenta

Ensambladas en “formas corporales nunca antes vistas” en la naturaleza, las células comenzaron a trabajar juntas, aseguraron los investigadores, que explicaron que las células de la piel formaron una arquitectura más pasiva, mientras que las del músculo cardíaco fueron puestas a trabajar creando un movimiento hacia adelante más ordenado, tal y como habían diseñado los algoritmos.

Todo esto, agregaron, ayudado por patrones espontáneos de auto-organización, permitiendo que los robots se movieran por su cuenta. Estos robots son, además, totalmente biodegradables: cuando terminan su trabajo tras siete días son solo células de piel muertas. “Miras las células con las que hemos estado construyendo nuestros xenobots y, genómicamente, son ranas; es cien por cien ADN de rana…pero no son ranas”, apuntó Levin, quien se preguntó qué más son capaces de hacer estas células.

Y es que construir estos xenobots -que seguirán desarrollando- es un pequeño paso para descifrar lo que este investigador llama “código morfogenético”, que proporciona una visión más profunda, de forma general, de cómo los organismos están organizados y cómo computan y almacenan información basada en sus historias y ambiente.

Ultimas noticias

Fabricacion de mascara de protección para COVID-19...
Fabricacion de mascara de protección para COVID-19



En estos dias de necesidad estoy fabricando mascaras de protección para los hospitales y centros qu [ ... ]

Leer mas
“Xenobots”: los primeros robots vivos creados a pa...
“Xenobots”: los primeros robots vivos creados a partir de células madre de rana


Un equipo de científicos ha logrado construir milimétricos “robots vivos”, ensamblados a par [ ... ]

Leer mas
Harvard creó abejas robóticas
Harvard creó abejas robóticas


Un equipo de inventores de la Universidad de Harvard mostró su nuevo desarrollo: un robot volador [ ... ]

Leer mas
LAS ROZAS, Arranca el Torneo de Robótica de Las Ro...
LAS ROZAS, Arranca el Torneo de Robótica de Las Rozas



La tercera edición del certamen ha contado con la presencia de 29 profesores y 41 alumnos de distin [ ... ]

Leer mas
Placa control Phobos I
Placa control Phobos I




Esquema de la placa de mi robot Phobos I

Leer mas
La visión artificial ya puede ‘ver’ en la oscurida...
La visión artificial ya puede ‘ver’ en la oscuridad

Hay noticias que parecen consecuencia de esa frase premonitoria de ese gigante que fue Arthur C. Cla [ ... ]

Leer mas
Soporte para alforjas Suzuki Marauder
Soporte para alforjas Suzuki Marauder



Como fabriqué el soporte para las alforjas de mi moto Suzuki Marauder 250cc

Leer mas
Cubeta para cloruro ferrico
Cubeta para cloruro ferrico



Como hice mi Cubeta para cloruro ferrico

Leer mas
Horno de fundición
Horno de fundición



Como hice mi horno de fundición para metales

Leer mas
Centrador de torno
Centrador de torno



Como fabricar un centrador para la fabricación de piezas en un torno de manera barata

Leer mas
esenfrpt
Moway.jpgGracias a Moway, podrás aprender a programar de una forma rápida, sencilla y divertida